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Abstract. We discuss in detail the analysis of structural data on liquids obtained using 
time-of-flight neutron diffractometry, in particular the Liquids and Amorphous Materials 
Diffractometer (LAD) situated at the ISIS pulsed neutron source at the Rutherford Apple- 
ton Laboratory. A series expansion for the inelasticity corrections has been calculated to 
higher order than has been done before and it is shown that the new terms are significant. It 
is argued, however, that there are fundamental reasons why any such correction will be 
inadequate for the lowest-energy neutrons. The problem of combining the results from 
detectors at different angles is considered and we present a generally applicable method for 
doing this in such a way that the effect of instrumental resolution is readily included. These 
procedures are demonstrated and tested on data obtained in an experiment to measure the 
structure factor of molten CsCl at 670°C close to the melting point, and at 970°C using LAD. 
The result at the lower temperature is in good agreement with a previous result obtained 
using the D4 steady state diffractometer at the High Flux Reactor of the Institut Laue- 
Langevin, Grenoble. The change in the structure factor between the two temperatures can 
be accounted for entirely in terms of density scaling indicating that there is little, if any, 
change in the pair correlation function g(r)  as the temperature is raised. 

1. Introduction 

For many years now the structures of liquids and amorphous materials have been 
studied by neutron diffraction. Most of these experiments have taken place using 
conventional reactor-based diffractometers which measure the scattered intensity of a 
monochromatic beam of neutrons as a function of scattering angle. An example of such 
an instrument is D4B (formerly D4) at the Institut Laue-Langevin (ILL), Grenoble. 
The methods of data correction and analysis necessary to obtain the total neutron 
weighted structure factor, F ( Q ) ,  from data so obtained are now well established (see, 
for example, Howe (1987) or Locke et a1 (1985) and references therein) and, with 
minor variations in detail, are used universally. Some experiments, however, have used 
time-of-flight diffractometers such as the Total Scattering Spectrometer (TSS) on the 
Harwell LINAC (Wright et a1 1985) or the General Purpose and Special Environment 
Powder Diffractometers (GPPD and SEPD) at the Intense Pulsed Neutron Source 
(IPNS) of the Argonne National Laboratory, USA (Wood et al 1988, Saboungi et al 
1987) in which the scattering of a pulse of neutrons, of a wide range of energies, is 
measured as a function of time of flight at a small number of scattering angles. With 
$ Current address: Chemical Technology Division, Argonne National Laboratory, 9700 South Cass Avenue, 
Argonne, Illinois 60439-4837, USA. 
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the advent of the high flux pulsed neutron source ISIS at the Rutherford Appleton 
Laboratory and its Liquids and Amorphous Materials Diffractometer (LAD) and the 
recent increase in intensity of IPNS and the commisioning of their Glasses, Liquids and 
Amorphous Materials Diffractometer (GLAD) this type of diffractometry has become 
more important. 

Although the basic correction procedures for time-of-flight diffraction have been 
worked out and applied (Price 1982, Howells et a1 1985, Howells 1986), with the large 
amount of data of high statistical quality that will now be produced the smaller details 
of the corrections become important. It is then perhaps timely to consider some of 
these details anew and to provide some discussion of the remainder. 

In this paper we discuss in some detail analysis of time-of-flight neutron diffraction 
data and describe the procedures we have used to analyse data from LAD. In so 
doing we extend the series expansion of Powles (1973) for the inelasticity, or Placzek, 
correction to higher order and show that the new terms are significant. We also discuss 
the validity of such an expansion. After correction of the data we are left with a number 
of spectra each of which represents F(Q) over a different Q-range and it is usually 
necessary to combine these in some way. We describe a method of doing this in such a 
way that the effect of instrumental resolution is readily included. We demonstrate our 
methods by applying them to an experiment on molten caesium chloride. 

The structures of many alkali and alkaline earth chlorides close to their melting 
points have now been determined in detail (McGreevy 1987). However nothing is 
known of the temperature dependence of this structure, except in the case of CaCl2 in 
which a close Ca-Ca grouping seems to break up as the temperature is raised (Day 
and McGreevy 1985). The purpose of the present experiment (which was one of the 
first to use LAD) was to see if there was any significant change in structure over the 
temperature range we could obtain, and to compare the result at the lower temperature 
with that obtained by Locke et a1 (1985) using D4 at ILL. There is no change in the 
shape of the Raman scattering spectrum of CsCl with temperature (Fairbanks 1987) 
which contrasts with the case of CaC12 (Bunten et al 1984) and may indicate that there 
is little change in structure. 

The comparison with reactor data is, in part, a test of the efficacy of our correction 
procedure. However, matters are not quite as simple as that. Because of inelasticity 
effects, among other things, all neutron diffraction instruments determine only an 
approximation to F (Q), and different instruments will give different approximations. 
This has been demonstrated for molten CsCl by Fairbanks and McGreevy (1989) and 
one of its consequences is shown by the work of Howe and McGreevy (1988) on molten 
LiCl. Our comparison is therefore also of the approximations to F(Q) obtained by the 
two instruments. 

2. The experiment 

The diffractometer LAD has been described in detail elsewhere (Howells 1980, ZSZS 
User Guide 1988). The detectors are arranged such that on each side of the instrument 
there are four at a scattering angle of 150", and one at each of the angles 90", 58", 
35", 20", lo", and 5". At the time of this experiment those at 20", 35", and 58" on one 
side of the instrument were scintillation detectors and the remainder were helium gas 
detectors. Spectra were recorded separately for each of these detectors and also for a 
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monitor in the incident beam and a transmission monitor, making a total of 22 spectra 
in all. 

The sample was contained in a vanadium cylinder of internal radius 0.45cm and 
external radius 0.49cm. The height of the sample in the container when molten was 
greater than the height of the neutron beam which was 3cm. The width of the beam 
was 1.5 cm. A cylinder of vanadium foil, concentric with the sample and through which 
an electric current was passed, provided the heating. 

Spectra were recorded for the sample at 670°C and at 970"C, for an empty container 
at 670"C, and for the background (the empty furnace) and a vanadium rod of lOmm 
diameter both at room temperature. Those for a scattering angle of 90" are shown in 
figure 1. The sharp dip at approximately 300 ms in the spectrum for CsCl is caused by 
an absorption resonance of caesium at 6 eV. 

0 2 4 6 8 10 12 11, 16 18 

Time of  f l i g h t  lmsl  

Figure 1. Normalised scattering intensities at an angle of 90" for (from top to bottom) the 
vanadium rod at room temperature, molten caesium chloride at 670°C, the empty container 
at 670"C, and the empty furnace at room temperature. 

3. Data analysis 

We start with five data sets consisting of raw data for the sample at two temperatures, 
the can, the background, and a vanadium rod. For each of these the raw data is in the 
form of a number of spectra, one for each detector, consisting of counts as a function 
of time of flight. The analysis of this passes through a number of stages. 

(1) For each data set data from equivalent detectors are summed and normalised 
by monitor count. 
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(2)  Each sample and vanadium spectrum is corrected for background and container 
scattering and for attenuation. 

(3) The vanadium spectra are corrected for multiple scattering and used to put the 
sample spectra on an absolute scale. The sample spectra are then also corrected for 
multiple scattering. 

(4) The inelasticity correction is applied to the sample spectra which are now 
expressed as a function of Q, the momentum transfer. 

(5) The different spectra are combined, taking into account the effect of instrumental 
resolution, to produce F (Q) and the total (neutron weighted) pair correlation function 

These stages will now be discussed in more detail in the corresponding subsections 

hT (4. 

below. 

3.1. Summing equivalent detectors 

We start with a large amount of data which it is desirable to reduce to more manageable 
proportions. To do this we sum the spectra from detectors that are considered 
equivalent, having checked them for consistency by comparing the ratio of sample 
counts to vanadium counts for all of the spectra to be summed. In our case we 
summed the pairs of detectors at 5" ,  10" and 90". The two detectors at 20" are not 
equivalent as the corrections are slightly different for gas and scintillation detectors so 
they have not been summed. The same is true for the pairs at 35" and 58" although 
the scintillation detector at 35" was not working correctly so that has been ignored 
entirely. We also omitted the eight spectra at a scattering angle of 150" from the analysis 
because, for our sample, there is little structure in the range of momentum transfer 
they cover and, because of the poor statistics, we considered that they contained little 
useful information. 

The number of neutrons counted depends on the total number of neutrons that 
have been incident on the sample. To remove this dependency every spectrum of 
each data set is divided by the total monitor count (monitor count integrated over 
time of flight). It is convenient at this stage to express the spectra as a function of 
neutron wavelength, assuming that neutrons are scattered elastically. The wavelength 
of elastically scattered neutrons is given by 

where t is the time of flight, m the neutron mass, dl the distance from the moderator 
to the sample (lOm), and d2 the distance from the sample to the detector (1.043m). 

3.2. Attenuation corrections 

The scattering intensity from the sample is modified by background and container 
scattering, by attenuation in the sample and container, and by multiple scattering. It 
is possible to write a neutron transport equation in which all these effects are included 
(Sears 1975). However the solution of such an equation is in general not straight 
forward unless a Monte Carlo method is used, and this can be time consuming. 
Instead we assume that we can consider attenuation and multiple scattering separately. 
In so doing we are making two approximations: (i) that multiply scattered neutrons are 
attenuated by the same amount as singly scattered neutrons; and (ii) that no neutrons 
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are scattered in both sample and container. The second of these approximations will be 
good for a thin-walled container such as we have here but if a thick-walled container 
had been used it would not be and the use of a Monte Carlo method (Bischoff et 
al 1972, Copley 1974, Mildner et a1 1977, Mildner and Carpenter 1977) would be 
more appropriate. We write the experimentally observed scattering intensities from 
vanadium, sample, container, and background (I,", I:, I:, and 1; respectively) in terms 
of nominal unattenuated intensities ( I v  etc) and attenuation coefficients (Avv etc) : 

The first subscript of the attenuation coefficients indicates the scattering being at- 
tenuated while the remainder show what is causing the attenuation. Thus Acsc is 
the attenuation of container scattering by container and sample while Acc is the at- 
tenuation of container scattering by the container only. Solution of these equations 
gives 

1 Acsc E Acsc 
Assc Acc Acc 

I s  = - [lf - -Ic - (1 - -) I ; ]  

Thus we can calculate Iv(L,) and IS@,) for each of the scattering angles provided we 
can calculate the attenuation coefficients, which also depend on scattering angle and, 
through their dependence on scattering and absorption cross sections, on wavelength. 
We have used for this calculation a routine written by Poncet (1977), which is based on 
the method of Paalman and Pings (1962) for a cylindrical sample within a cylindrical 
container. Different routines must be used for different geometries or for non-uniform 
beam profiles (e.g. Soper and Egelstaff 1980). In doing this calculation we have 
assumed that the absorption cross sections were proportional to neutron wavelength 
so that they could be calculated from the values given in table 1. This is generally 
true for thermal neutrons but is not valid near a nuclear resonance. Because the data 
cannot be corrected properly near the caesium resonance we will not be able to use 
data gathered with high-energy neutrons. 

Table 1. Neutron scattering properties, taken from Lovesey (1984). Thermodynamic 
properties, taken from Janz (1967) are as follows: melting point, 645°C; p(670°C), 0.019 79 
k3; p(970°C), 0.01749 k3; isothermal compressibility at 700"C, 4.29 x cm3 J-l. 

c s  C1 
~ 

6 - (10-l~ cm) 0.542 0.9579 
b2 cm2) 0.315 1.323 

at 2200m s-' (b) 29 33.5 

Another approach would be to calculate the attenuation coefficients as a function of 
wavelength using the measured attenuation of unscattered neutrons determined using 
the transmission monitor. This method has the advantage that it allows for variation in 
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the cross sections with neutron energy of a form other than that expected; it has been 
used successfully by Soper (1988). However, data in the region of a nuclear resonance 
still could not be easily interpreted because the coherent neutron scattering lengths are 
no longer constant. 

3.3. Multiple scattering and calibration 

Neglecting, for a moment, multiple scattering, the intensity at a given scattering angle 
is 

where the integration is over the incident spectrun 4(A) at constant ie, k and k' are 
the incident and scattered wavevectors respectively, ~ ( k ' )  describes the efficiency of the 
detector and Ns  is the number of sample atoms. S(Q,o)  is the total neutron weighted 
dynamic structure factor, Q = (4n/%) sin(8/2), where 8 is the scattering angle, is the 
momentum transfer, and Ao is the energy loss, of the scattered neutrons. In the static 
approximation S(Q, o) = S(Q)S (0) and this reduces to 

where, for convenience, we have introduced @(Ae).  Including multiple scattering this 
becomes 

where @, b, and bg are neutron scattering lengths, AS is the multiple scattering fraction, 
the sums are over particle type, c, is the fractional concentration of particles of type 
CL and A,g(Q) is a Faber-Ziman partial structure factor. In the case of vanadium the 
scattering is almost totally incoherent and bv is very small. The coherent scattering, 
which gives rise to a few small Bragg peaks, can be removed by smoothing the spectra 
using cubic splines to give the smoothed intensity I"(&) : 

so the total structure factor for the sample is 

which we express as a function of momentum transfer. The multiple scattering, AV and 
As, was estimated by interpolating the tabulated data of Howe (1987) (which is in good 
agreement with that of Sears (1975)) and was assumed to be independent of scattering 
angle although dependent on wavelength. Monte Carlo calculations (Howe 1987) show 
that this is a good approximation for samples of the shape, size, and absorption of 
ours. 
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3.4 .  Inelasticity corrections 

In the previous section we used the static approximation but for a liquid the atoms 
recoil when scattering neutrons and the scattering is not purely elastic. S ( Q )  is the 
integral of S ( Q , w )  over w at constant Q but the result of the experiment is the integral 
in (4). This can also be written as an integral over w (Powles 1973): 

at constant I,, where we have introduced Qe = 4n/& sin(O/2) and 

d l  + d 2 ( 1  - 2 m ~ / ? i k ~ ) - ' / ~  
d l  + d 2 ( 1  - 2 m ~ / h k ~ ) - ~ / ~  

C =  

We see that (9) is an integral of S ( Q ,  w )  multiplied by a function of w performed along 
a path that is not at constant Q. There is a difference between this and the integral 
that defines S ( Q )  and in order to correctly determine the structure factor we must 
make a correction for this difference. Such a correction is known as the inelasticity, 
or Placzek, correction. It is clear that to calculate this exactly we must have a full 
knowledge of S ( Q ,  w )  but if we had then of course we would know S ( Q )  already. There 
are various approaches to this problem. Some authors have used a model of S ( Q , w )  
or a combination of an experimentally determined S ( Q , w )  and a model (Dahlborg 
and Kunsch 1983). The disadvantage of the latter is that it requires good experimental 
data; and both have the disadvantage that they depend on the details of the model 
which can only be an approximation. Another approach is to use a power series 
expansion that can express the correction in terms of the moments of S ( Q ,  w).  The first 
few moments are known; the terms containing the higher moments, which depend on 
the potential, are neglected. This is the approach used by Placzek (1952) and which, in 
the form developed by Yarnell et a1 (1973), is often used for reactor data. 

If the integrand in (9) is expressed as a power series in w the zeroth-order term will 
reduce to (5) and we get 

and (8) becomes 

-2 
bvl - 

where P1(Qe) and P2(Qe) are the first- and second-order terms of the inelasticity 
correction, respectively. The first-order term was calculated by Powles (1973). In 
Appendix 1 we extend the calculation so as to determine the second-order term. 
For this series expansion approach to be useful the series giving the correction must 
be dominated by the terms that have not been neglected. In figure 2 we show the 
correction to first order and to second order; it can be seen that they are quite different, 
which suggests that the first-order term alone is inadequate. With the inclusion of the 
second-order term we see that the correction diverges at low Qe because of the k B T / E  
term. This behaviour can be understood by considering the paths along which the 
integration is performed and which are shown in figure 3. For high values of Qe the 
integration in nearly at constant Q but at low Qe as Qe decreases the paths become 
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increasingly shallow and the value of the integral will increase due to contributions 
from the broader quasi-elastic peak at higher Q. This is demonstrated by the third 
curve shown in figure 2, which is obtained by performing the integration in (9) using an 
S(Q, CO) for a free particle of mass equal to the mean of the caesium and chlorine atomic 
masses. It is clear that the expansion to second order is a better representation of this 
than the expansion to first order although there are significant differences particularly 
at large scattering angles. We conclude that the expansion to first order is of little use 
and that even the expansion to second order may be of limited accuracy at low Q. At 
high Q, on the other hand, the inelasticity correction is very small. 

. . . . . . . . . . . . ______________. 

0 5 10 15 0 5 10 15 0 5 10 15 

Momentum transfer (A-']  
Figure 2. Inelasticity corrections at angles of (from left to right, top to bottom) 5", IO", 
20", 35", 58", and 90". The broken curves are the expansion to first order (P,(Q,));the 
full curves are the expansion to second order (Pl(Qe) + P2(Qe)); and the dotted curves are 
obtained by integration of a free particle S(Q,o) .  

We can also see from figure 3 that at low Qe the slopes of the paths are similar 
to the velocity of sound in many liquids. As has been discussed by Fairbanks and 
McGreevy (1989), this can result in an increase in scattering at low Qe due to scattering 
from acoustic-phonon-like modes. As such collective modes do not contribute to the 
first two moments of S(Q,  CO) the series expansion we have derived cannot be expected 
to correct for this effect. 

The inelasticity correction contains terms in the incident flux, the detector efficiency, 
and their derivatives. For the flux we fitted the expression (Howells 1984) 

(13) 
(b(;)=(bM.x$exp [ - ( g ) 2 ]  +& 1 

i 1 f 2 a  1 + exp[(l- 1.1)/1.2] 

where ( b ~ ~ ~ ,  (bepi, AT, % I ,  A2 and a are variable parameters, to the incident flux after 
it had been corrected for the efficiency of the monitor; for the efficiency we used 
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Figure 3. Integration paths for the LAD detectors at angles of (from left to right, top to 
bottom) 5", lo", 20", 35", 58", and 90". The broken lines represent the velocity of sound in 
molten CsCl at 670°C. 

the expression e = 1 - exp(-ai) where a = 0.83 for the scintillation detectors and 
a = 1/1.44 for the gas detectors. 

After applying the inelasticity corrections we now have, for each sample, eight 
spectra, each of which is an approximation to SiQ) (we now drop the subscript of Qe 
for convenience) over a different range of momentum transfer. Six of those at 670°C are 
shown in figure 4. The effect of the caesium resonance can be quite clearly seen in the 
results from the lower angles: there is a fairly broad dip in the spectra at their high-Q 
ends. At the low-Q ends considerable differences can be seen between the spectra. 
This is probably mainly due to inelasticity effects because, as we have discussed above, 
the correction cannot be considered very reliable at low Q. However there are also 
other possible factors. The low-Q data are obtained using long-wavelength neutrons, 
the flux of which is low and the background relatively high. The absorption at these 
wavelengths is fairly high and so the absorption corrections are large. If the background 
was in part sample dependent this would have the largest effect in this region. 

Because of these problems it was necessary to truncate the spectra. All data at 
Q-values greater than that corresponding to a neutron energy of 1 eV were discarded. 
The value of l e v  was chosen in order to remove all evidence of the resonance dip 
from the spectra. The maximum Q-value of the remaining data was 3 2 k '  which is 
still far larger than that at which no structure is observable in S ( Q ) .  At the low-Q end 
the spectra were truncated at the Q-values 0.3.k' ( S O ) ,  1 S k '  (lo'), 2 S k '  (20"), 
3 A-' (35"), 4 A-' (58') and 5 k1 (90") (corresponding to energies between 50meV 
and 300meV) which were chosen somewhat arbitrarily so that the spectra now agreed 
with each other in the regions of overlap. 
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10 0 5 0 5 10 

Momentum transfer (A- ' )  
Figure 4. The cross section of molten caesium chloride at 670°C as measured by the 
detectors at 5" ,  lo", 20", 35", 58",  and 90". 

3.5. Combining spectra, resolution corrections, and the pair correlation function 

A useful way of presenting the corrected data is in the form of the coherent scattering 
function F ( Q ) ,  

as this tends to zero at large Q and thus is in a form that can be Fourier transformed 
to give the pair correlation function hT(r). In order to obtain F ( Q )  over as large a 
Q-range as possible and with as good statistics as possible we wish to combine the 
corrected spectra in some way. One approach would be to simply subtract b2 from 
each spectrum and to average them in the regions of overlap. However, small errors 
in the corrections can mean that the measured S(Q)  tends to a value slightly different 
from p. As F ( Q )  should tend to zero at large Q it is desirable to subtract the true 
limiting value of S ( Q ) .  Further, this limiting value may be slightly different for the 
different spectra. This would occur, for example, if the background intensity was 
slightly attenuated by the sample, or, as we see from figure 2, could be caused by 
inelasticity effects. Subtracting the same constant from each spectrum would then lead 
to small discontinuities in the combined F(Q) .  To overcome these problems we have 
combined the spectra in this simple manner after subtracting from each a different 
constant chosen, by a least squares method, so that the spectra match in their regions 
of overlap and the combined F ( Q )  has the correct limiting behaviour at high Q. 

There is, however, a reason to expect the different spectra to be in less than perfect 
agreement which we have ignored so far. This is the effect of instrumental resolution 
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that causes the intensities we have considered to be convoluted with a resolution 
function, I?(&, A:), that depends on the instrument giving 

The effect of this convolution is to slightly broaden the structure in the observed 
intensity. As there is very little structure in the vanadium spectra, apart from Bragg 
peaks which we ignore anyway, we can ignore the effect of resolution on it. This 
means that, as we can see from (8), to a good approximation the effect of instrumental 
resolution is to perform a similar convolution on the S(Q) or F(Q) obtained from each 
spectrum so we get 

where we have now written the resolution function, which is in general different for 
each spectrum, as a function of Q and Q’. F(Q) is related to the total pair correlation 
function hT(r) by 

F(Q) = * sr rhT(r) sin(Qr) dr 
Q o  

where p is the ionic number density and 

where h,p(r) = g,p(r) - 1 and 4zr2pcpg,p(r) dr is the mean number of ions of type ,8 
centred in a shell of thickness dr and radius r about an ion of type a. We can therefore 
write 

where 

If we determine hT(r) not by Fourier transformation of F(Q) but by some method 
in which hT(r) is varied until the p(Q) produced by equation (19) are in satisfactory 
agreement with all the experimental data we can take into account the effects of 
resolution and obtain one hT(r) function and, by Fourier transformation of it, one 
F(Q). This is rather simpler than methods for deconvolving the resolution function 
entirely in Q-space (Howells 1985). The method we chose to obtain hT(r) was an 
adaption of the maximum-entropy method of Root et al (1986) which we describe in 
Appendix 2.  For LAD the resolution function is approximated by a Gaussian in time 
of flight, or A,, with a width proportional to the time of flight (Howells 1985). 
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where r is related to the full width at half maximum (FWHM) of the Gaussian by 

r2 = 4 ln 2/(FWHM/&)2 (22) 

and the widths are given by FWHMII., N 0.11 (5" ) ,  0.06 (lo"), 0.028 (ZOO), 0.017 (35") 
and 0.012 (58" and 90'). At the higher angles the Gaussian form is only approximate 
but as the resolution function is much narrower at these angles and so resolution is 
not very important for liquid samples we consider it a good enough approximation for 
our purposes. It is easily shown that 

R(Q, Q') = - rQ exp[-T2(1 - Q/Q')2] 
QI2 f i  

so 

exp[-T2(1 - Q/Q')2] dQ' 

This integral was performed numerically. 

Momentum transfer ( A - ' )  
Figure 5. The total structure factor for CsCl at 670°C compared with the data measured 
by different detectors. The full curves are the resolution broadened function, the broken 
curves are the unbroadened structure factor and the points are the experimental data. 

In figure 5 we compare the individual spectra with the F ( Q )  and resolution- 
broadened P ( Q )  obtained using this method. It is clear that the effect of instrumental 
resolution, which is largest for the lowest angle detector, is small although not com- 
pletely negligible. However given the statistical accuracy of this experiment it is not 
really necessary to include it and we would have done just as well by simply taking 
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the mean of the spectra. The structure in F ( Q )  at low Q should not be considered 
significant. As is clear from the figure this is well within the statistical errors, which are 
particularly large at low Q and is just an artefact of the process by which we obtained 
F ( Q ) .  This is not really a failure of the method: with better statistics we would expect 
better results. 

4. Results and discussion 

The data at 670°C are compared with that obtained on D4 in figure 6. Apart from 
a possible small systematic deviation the agreement is good and certainly within the 
statistics. Recent analysis (McGreevy 1988) of the D4 data using the Reverse Monte 
Carlo technique (Pusztai and McGreevy 1988) suggests that this systematic deviation 
is due to errors in the D4 data rather than the current data. 

1 3 5 7 9 

Momentum transfer (A- ’ )  
Figure 6. The total structure factor for molten caesium chloride at 670°C as measured 
using LAD (points) compared with that at 685°C measured using D4 (curve). 

The results obtained for the sample at the two temperatures are shown in figure 7. 
The line is the result from our maximum-entropy procedure while the dots represent 
the experimental data when the eight spectra have been combined by averaging in 
the regions of overlap. We see that there appears to be some change in F ( Q )  with 
temperature. The value of F ( 0 )  increases with temperature; this is to be expected 
from the change in the compressibility of the salt which gives the theoretical values 
F ( 0 )  = -0.55 at 670°C and -0.48 at 970°C. The first peak in F ( Q )  is not so sharp 
at the higher temperature. The results, together with the values of F ( 0 )  derived from 
compressibility data, are consistent with F ( Q )  scaling with the density. 
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Figure 7. The total structure factor for molten caesium chloride at 670°C (top) and 970°C 
(bottom). 

In figure 8 we show the pair correlation functions. To get some idea of the accuracy 
of these we have obtained h ~ ( r )  for the lower temperature using several methods: 
the maximum-entropy method outlined above, a direct Fourier transformation of 
the combined spectra; and the MAXENTS method of Soper (1986) which is another 
maximum-entropy-related method, although one that does not include the effects of 
instrumental resolution. The different methods give answers that are all in fairly good 
agreement. 

The second part of the figure shows the IZT(Y) obtained at the two temperatures 
and from the D4 data. These are in as good agreement as those shown in the first part 
of the figure so we see that there is no significant change in our measured h T ( r )  with 
temperature. 

5. Conclusions 

We have developed a procedure for the analysis of LAD data that deals with some of 
the new problems involved with this type of diffractometry and that produces results 
that are in good agreement with those obtainable with conventional reactor-based 
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Figure 8. Pair correlation functions. Top: For the sample at 670°C obtained using the 
procedure described in the text (short dashes), by Fourier transformation (long dashes) and 
using the MAXENTS program (curve). Bottom: At 670°C (curve), at 685°C from the D4 
data (long dashes) and at 970°C (short dashes). 

diffractometers. The statistical accuracy of the data we show is very poor because it 
was obtained soon after ISIS started running and so is, perhaps, not the best test of 
our methods. However, they have since been applied to much better data and have 
allowed the technique of isotopic substitution to be successfully applied (Howe et aE 
1989). 

We expect that new methods of determining the pair correlation function that avoid 
Fourier transformation of the experimental data, such as the Reverse Monte Carlo 
method or Soper's I D  Monte Carlo method (Soper 1987) will be readily adaptable to 
use our method of including instrumental resolution in the analysis and will be an 
improvement over the maximum entropy method we have used here. 

The only conclusion that can be drawn concerning the temperature dependence 
of the structure of molten caesium chloride is that although the density changes by 
13% between 670°C and 970°C there is little, if any, change in the local structure as 
described by the pair correlation function. This is consistent with the Raman scattering 
results (Fairbanks 1987) which show that while the intensity of scattering increases 
linearly with temperature in the same range, there is no shape in the change of the 
spectrum. 
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Appendix 1. Inelasticity corrections 

As the manner of calculation is similar to that of Powles (1973) we feel it unnecessary 
to give full details here and so restrict ourselves to presentation of the results of the 
series expansions. The reader who wishes to reproduce the calculation is referred to 
Powles (1973) or to Howe (1987) where our working is given in detail. 

We wish to expand the integral in (9) and start by expanding 

For convenience we introduce the dimensionless quantities 

2 x = mw/Ake f = d l / ( d l  + 4). 

Expanding to second order in x we find 

k e / k  = A / A e  = 1 + (f - l )x  + (3/2)(f - 1)(2f - 1)x2 + 
k / k ’  = A’/]> = 1 + x + [(4f - 1)/2]x2 + . . . 
k‘/ke = Ae/A’ = 1 - f x  - [(4f2 - 3f)/2]X* + . . . 

(Al . l )  

(A1.2) 

(A1.3) 

which enable us to expand all the factors in the integrand of (9) 

k’/k = l“/l-’ = 1 - x + [(3 - 4f)/2]x2 + . . . . (A1.4) 

The constant C defined by (10) can be expanded to give 

C = 1 + 2(1 - f ) ~  + 2(5f - 2)cf - 1)x2 + . . . . (A1.5) 

4(%) is expanded as a Taylor series about to give 

where 

and the primes indicate differentiation. Similarly expanding e(k’) about ke we get 

E ( k ’ ) / f ( k , )  = 1 - f . 1 ~  + [(f2.2 - f ~ 1 ) / 2 ] ~ *  + . . . (A1.8) 

where 

€ 1  = k e d ( k e ) / f ( k e )  € 2  = k z d ’ ( k e ) / e ( k e ) .  (A1.9) 

Finally, the expansion of Q2 - Q,’ is 

Q2 - Qz = Q:(l - 2f)x + [kz - Qz(3f2 - 3f + 1/2)]x2 + . . . . (A1.10) 
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Substituting into (Al . l )  gives 

S(Q, CO) = S(Qe, 0) + Q,Z(1 - 2f)S'x + { [kz - Q:(3f2 - 3f + 1/2)]S' 
+ Q:(2f2 - 2f + 1/2)S"}x2 + . . . . ( A l . l l )  

We are now in a position to evaluate the integral in (9). The zeroth-order term in x is 
simply 

(A 1.1 2) 

which is exactly what we wish to determine. The higher-order terms are the corrections 
that must be made to the experimentally determined cross section to obtain this. For 
these we require the moments of S(Q,w) which are 

5 

&(Q) = l, d o  0 2 S ( Q , o )  = ~ c . ~  (F + 
3! 

where ka is the Boltzmann constant and T is the temperature. 
the correction is thus 

(A1.13) 

ti2Q4 4M,' +...) 
The first-order term to 

(A1.14) 

- m' + 2f (1 - f ) 41 €1 + (1 - f ) 2  42 + f2.2 + (2f2 - 7f + 8)]} 1 c b2 - " "M,2 
(Al .  15) 

where E is the energy of the incident neutrons. 
The series expansions and manipulations involved in this calculation were per- 

formed and checked using the REDUCE algebraic manipulation program on a VAX 
11/780 of the Oxford University Computing Service. 
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Appendix 2. Applying the maximum-entropy method 

We base this on the method of Root et al (1986). They define the information 
entropy to be 

H = -471 dr r 2 g ( r )  (In g ( r )  - 1) s 
which is written in a discrete form as 

v 

(A2.1) 

(A2.2) 
i= 1 

where N,. is the number of points in r-space. If g ( r )  is actually a neutron-weighted 
sum, g T ( r ) ,  of partial correlation functions, g,p ( r )  defined in an analogous fashion to 
(18) it is necessary to replace g ,  in this equation by g, /g l ,  where g ,  = limr.+,g(r). The 
x 2  constraint is, in our case, 

(A2.3) 

where n labels the spectrum, i labels the point within the spectrum, and N is the total 
number of data points for all spectra. E,,, are the experimental data, the nnl are the 
standard deviations of the points and P n ,  is given by (see (19)) 

F n l  = 471p Ar r i (gk  - 1)R,,k (A2.4) 
k 

where Rnik is R ( Q i , r k )  for the nth spectrum. We maximise H using the method of 
undetermined Lagrange multipliers so we require that 

where A is a Lagrange multiplier. From (A2.4) we see that 

i?E1,,/2gJ = 471pAr r;RnlJ (A2.6) 

so that 

(A2.7) 

Substituting (A2.4) into this gives a set of coupled equations in the gj which, for a 
given value of A, may be solved by, for example, the Newton-Raphson method. The 
procedure, then, is to choose a value of the Lagrangian multiplier A ;  solve (A2.7) for 
the g j  by repeated iteration, calculate the value of the constraint function in (A2.3); if 
this is not sufficiently close to 1 then adjust the value of the Lagrange multiplier and 
repeat the process until either the constraint is satisfied or no progress is being made 
in approaching it. In practice the values oni are not known exactly so it is sufficient to 
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run the programme until there is no further improvement in the value of the constraint 
function. This differs from the method of Root et a1 (1986) in solving in r-space rather 
than Q-space; this is necessary if we are to include the resolution. 

We have assumed in the above that the E,, are data points of spectra from which 
the limiting value has already been subtracted. If that is not the case we can easily 
introduce a constant c, for each spectrum and replace E,, in (A2.3) by E,, - c,. We 
choose c, to minimise x2 for each spectrum so that 

(A2.8) 

This term must then be inserted in (A2.5). 
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